The Landscape of Documentation Failure: Error Typologies, Temporal Dynamics, and Linguistic Patterns in Hospital Recordss in Academic Writing

Authors

  • Lie Guofang Xiamen University, China Author
  • Zhang Ruiliy Tongling University, China Author

DOI:

https://doi.org/10.61667/qs136k79

Keywords:

natural language processing, healthcare quality, electronic health records

Abstract

Clinical documentation failures remain a critical patient safety threat despite widespread electronic health record (EHR) adoption. Yet, the underlying linguistic mechanisms and temporal dynamics driving high-severity errors are poorly understood. This mixed-methods study characterized high-severity documentation failures across three tertiary hospitals, integrating multivariate logistic regression for risk quantification with qualitative discourse analysis and temporal mapping. We analyzed 60 cases using the Documentation Failure Severity Index (DFSI). Omission errors were the most prevalent (38%) and conferred the highest risk of severe adverse outcomes (adjusted odds ratio [aOR] = 3.12, $p = 0.001$). Crucially, ambiguous negation (e.g., "no clear evidence of...") demonstrated strong co-occurrence with omission errors ($\Phi = 0.62$), functioning as a linguistic "mask" for absent clinical information. Temporal analysis revealed distinct vulnerability windows: omissions peaked immediately upon admission (Day 0) and Day 1, while contradictions emerged during later hospitalization (Days 2–5). A novel four-tier typology linked this quantified risk to five recurrent qualitative linguistic glitches. These results confirm that documentation failures are temporally patterned and linguistically mediated phenomena. Proactive, linguistically-informed prevention strategies are imperative. Our findings support implementing admission-period structured templates, mid-stay reconciliation tools, and specialized staff training focused on identifying and mitigating ambiguous negation and passive voice constructions. Integrating these identified glitch patterns into natural language processing systems is essential for achieving real-time error prevention and improving patient safety across healthcare settings

References

Abdelhak, M., Grostick, S., & Hanken, M. A. (2007). Health information: Management of a strategic resource (3rd ed.). Saunders/Elsevier.

Abdelrahman, W., & Abdelmageed, A. (2014). Medical record keeping: Clarity, accuracy, and timeliness are essential. BMJ: British Medical Journal, 348, f7716. https://doi.org/10.1136/bmj.f7716

Artioli, G., Deiana, L., De Vincenzo, F., Raucci, M., Amaducci, G., Bassi, M. C., Di Leo, S., Hayter, M., & Ghirotto, L. (2021). Health professionals and students' experiences of reflective writing in learning: A qualitative meta-synthesis. BMC Medical Education, 21, 331. https://doi.org/10.1186/s12909-021-02831-4

Artioli, G., Deiana, L., De Vincenzo, F., Raucci, M., Amaducci, G., Bassi, M. C., Di Leo, S., Hayter, M., & Ghirotto, L. (2021). Health professionals and students' experiences of reflective writing in learning: A qualitative meta-synthesis. BMC Medical Education, 21, 331. https://doi.org/10.1186/s12909-021-02831-4

Babili, G., & Mndawe, I. (2023). Police written discourse: Analysing notable glitches in police reports. Applied Linguistics Review, 14(2), 45–67.

Ben Abacha, A., Yim, W., Fu, Y., Sun, Z., Yetisgen, M., Xia, F., & Lin, T. (2024). MEDEC: A benchmark for medical error detection and correction in clinical notes. arXiv Preprint. https://arxiv.org/abs/2412.19260

Bertocchi, L., Petrucci, C., Masotta, V., Marcotullio, A., Jones, D., Lancia, L., & Dante, A. (2025). Standardized nursing terminologies and electronic health records: A secondary analysis of a systematic review. Healthcare, 13(16), 1952. https://doi.org/10.3390/healthcare13161952

Horne, I. M. T., Veggeland, F., Bååthe, F., Drewes, C., & Rø, K. I. (2023). Understanding peer support: A qualitative interview study of doctors one year after seeking support. BMC Health Services Research, 23, 324. https://doi.org/10.1186/s12913-023-09312-y

Kugic, D., Weng, C., Friedman, C., Butler, A. M., Shang, N., Kury, F. S. P., & Wang, L. (2024). Short-form expressions in clinical narratives: A scoping review of natural language processing approaches for disambiguation and clinical concept extraction. Journal of Medical Internet Research, 26, e57852. https://doi.org/10.2196/57852

Leung, K. C. Y., & Peisah, C. (2023). A mixed-methods systematic review of group reflective practice in medical students. Healthcare, 11(12), 1798. https://doi.org/10.3390/healthcare11121798

Leung, K. C. Y., & Peisah, C. (2023). A mixed-methods systematic review of group reflective practice in medical students. Healthcare, 11(12), 1798. https://doi.org/10.3390/healthcare11121798

Lim, J. Y., Ong, S. Y. K., Ng, C. Y. H., Chan, K. L. E., Wu, S. Y. E. A., So, W. Z., Tey, G. J. C., Lam, Y. X., Gao, N. L. X., Lim, Y. X., Tay, R. Y. K., Leong, I. T. Y., Rahman, N. D. A., Chiam, M., Lim, C., Phua, G. L. G., Murugam, V., Ong, E. K., & Krishna, L. K. R. (2023). A systematic scoping review of reflective writing in medical education. BMC Medical Education, 23, 12. https://doi.org/10.1186/s12909-022-03924-4

Liu, H., Fu, S., Lu, Q., Ahn, J., Chen, F., Yin, H., Wen, J., Yue, Z., Harrison, T., Jun, J., Ruan, X., Huang, M., Wen, A., Wang, L., Kwak, M. J., Rianon, N., Wang, Y., & Huang, R. (2025). MedError: A machine-assisted framework for systematic error analysis in clinical concept extraction. Research Square. https://doi.org/10.21203/rs.3.rs-7151650/v1

Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C., & Harkema, H. (2008). Extracting information from textual clinical narratives to improve medical natural language processing. Journal of the American Medical Informatics Association, 15(2), 159–170. https://doi.org/10.1197/jamia.M2632.

Miller, K., Biro, J., Gold, J. A., Hose, B. Z., Singh, H., & Ratwani, R. (2024). Documenting diagnosis: Exploring the impact of electronic health records on diagnostic safety (AHRQ Publication No. 24-0010-3-EF). Agency for Healthcare Research and Quality. https://www.ahrq.gov/sites/default/files/wysiwyg/diagnostic/resources/issue-briefs/dxsafety-ehr-impact.pdf

Riley, P., Levy, P., Patel, K. D., McIntyre, N., & Frampton, G. (2023). Clinical documentation integrity: Its role in health data integrity, patient safety and quality outcomes and its impact on clinical coding and health information management. Health Information Management Journal, 52(3), 123–145. https://doi.org/10.1177/18333583231218029

SAGE Publishing. (2024). Documentation errors and deficiencies in medical records: A systematic review. SAGE Open Medicine, 12, 1–10. https://doi.org/10.1177/09720634241229545

Sarraf, B., & Ghasempour, A. (2025). Impact of artificial intelligence on electronic health record-related burnouts among healthcare professionals: Systematic review. Frontiers in Public Health, 13, 1628831. https://doi.org/10.3389/fpubh.2025.1628831

Schaye, V., DiTullio, D., Guzman, B. V., Vennemeyer, S., Shih, H., Reinstein, I., Weber, D. E., Goodman, A., Wu, D. T. Y., Sartori, D. J., Santen, S. A., Gruppen, L., Aphinyanaphongs, Y., & Burk-Rafel, J. (2025). Large language model–based assessment of clinical reasoning documentation in the electronic health record across two institutions: Development and validation study. JMIR Medical Informatics, 13(1), e67967. https://doi.org/10.2196/67967

Smallwood, N., Karimi, L., Pascoe, A., Bismark, M., Putland, M., Johnson, D., & Cross, W. (2021). Coping strategies adopted by Australian frontline health workers to address psychological distress during the COVID-19 pandemic. General Hospital Psychiatry, 72, 124–130. https://doi.org/10.1016/j.genhosppsych.2021.08.008

Syrowatka, A., Motala, A., Lawson, E., & Shekelle, P. (2024). Computerized clinical decision support to prevent medication errors and adverse drug events: A rapid review. Journal of the American Medical Association, 331(7), 589–598. https://doi.org/10.1001/jama.2024.0057

Wang, Z., West, C. P., Stelling, B. E. V., Hasan, B., Simha, S., Saadi, S., Firwana, M., Nayfeh, T., Viola, K. E., Prokop, L. J., & Murad, M. H. (2024). Measuring documentation burden in healthcare (AHRQ Technical Brief No. 47). Agency for Healthcare Research and Quality. https://www.ahrq.gov/sites/default/files/wysiwyg/documentation-burden-prepub-tech-brief.pdf

Wurster, F., Beckmann, M., Cecon-Stabel, N., Dittmer, K., Hansen, T. J., Jaschke, J., Köberlein-Neu, J., Okumu, M. R., Rusniok, C., Pfaff, H., & Karbach, U. (2024). The implementation of an electronic medical record in a German hospital and the change in completeness of documentation: Longitudinal document analysis. JMIR Medical Informatics, 12(1), e47761. https://doi.org/10.2196/47761

Yitayih, S., Workie, A., Ayenew, A., & Damtie, Y. (2023). Medical documentation practice and its association with knowledge, attitude, training, and availability of documentation guidelines in Ethiopia, 2022: A systematic review and meta-analysis. Informatics in Medicine Unlocked, 41, 101237. https://doi.org/10.1016/j.imu.2023.101237.

Zhang, Y., Zhou, X., Wang, Y., Chen, Z., Li, M., & Wang, L. (2024). Differences in changes of data completeness after the implementation of an electronic medical record in three surgical departments of a German hospital–a longitudinal comparative document analysis. BMC Medical Informatics and Decision Making, 24, 305. https://doi.org/10.1186/s12911-024-02667-0

Downloads

Published

2025-11-29